SKUDONET

TCP and UDP Load
Balancing from the
Kernel

This document describes the internal architecture and
performance characteristics of SKUDONET's kernel-
based data plane for TCP and UDP load balancing.

It explains how forwarding decisions are executed inside
the Linux kernel using netfilter and conntrack, how this
approach differs from user-space proxy load balancers,
and how it enables high throughput with low latency
and efficient CPU usage.



Introduction

When it comes to extreme performance, the
distance between the kernel and user space is an
invisible yet decisive boundary.

At that boundary, SKUDONET has built a bridge
— an architecture that harnesses the raw power
of the Linux kernel — the TCP/IP stack, netfilter,
and conntrack — and exposes it through a clean,
understandable, and consistent control path.

TCP and UDP Load Balancing from the Kernel



1. Kernel Space: Where
the Magic Happens

In Linux, the kernel is the only place where packets truly exist.

Everything that happens in user space — sockets, proxies, processes
— is an abstraction. Each transition between these two worlds
involves memory copies, interrupts, scheduling, and the inevitable
“context switch” that Kills latency and consumes CPU cycles.

SKUDONET takes a direct approach: it moves traffic where it belongs
— to the kernel’s data plane — while keeping orchestration and
control in user space.

The result is a system capable of balancing millions of TCP and UDP
flows per second, with minimal CPU usage and no loss of visibility or
governance.

How SKUDONET Tames the Kernel

At the heart of the system, the SKUDONET core works directly with
netfilter structures — the Linux subsystem responsible for routing,
NAT, and packet filtering.

Instead of re-implementing a load balancer in user space,
SKUDONET injects rules and tables directly into the kernel, where
every forwarding decision is made in microseconds, with no
intermediate steps.

This philosophy achieves a perfect balance:
o The data plane resides in the kernel, where traffic flows at line
rate.

e The control plane remains in user space, where rules are
defined, managed, and dynamically applied.

TCP and UDP Load Balancing from the Kernel



2. TCP and UDP Load
Balancing from the Kernel

TCP and UDP load balancing in the kernel is not just a matter of
elegant design — it is proof that the right code, in the right place,
can turn modest hardware into a precision instrument.

SKUDONET has put this into practice: layer 4 performance that is
high, stable, and verifiable.

2.1 Test Environment

The tests were performed on an SNA hardware appliance running
SKUDONET Enterprise Edition 10, optimized for the SNA 7108
model.

The environment consisted of two directly connected 1 GbE networks
— one for services (172.16.1.0/24) and one for backends (172.16.2.0/24).

The operating system and kernel were standard, with netfilter,
conntrack, and NAT active — no bypass, no DPDK, no fast paths
outside the TCP/IP stack.

CPU Intel Xeon E3-1245 v5 (4C /8T, 3.5 GHz)
RAM 8 GB DDR4

NICs 2 x1GbE

Client Tool wrk (10 threads, 360 connections)
Backend Nnginx serving empty responses

TCP and UDP Load Balancing from the Kernel



2.2 L4XNAT Profile: Simplicity and Speed

The L4XNAT profile with SNAT is the core of transport-layer load
balancing in SKUDONET.

Here, there are no user-space processes managing sockets or proxies
relaying bytes: packets arrive, the kernel makes the decision, and
traffic leaves — all within netfilter's domain.

During a 30-second sustained test (wrk -» 172.16.1.1:80), the system
achieved:

475,983 requests per second, equivalent to over 3.33 GB read.
Average latency: 1.63 ms.

Standard deviation: 0.95 ms.

Average total CPU usage: 27.7%.

In other words, the system handled nearly half a million HTTP
connections per second on mid-range hardware, with a full kernel
stack and real netfilter rules.

2.3 Performance Interpretation

In a traditional user-space load balancer — such as an L7 proxy —
each request crosses the kerneleuser boundary multiple times:
receive, read, write, and forward.

Memory copy User Space Backend
Client Contexto switch Proxy Process Contexto switch
Syscall Syscall Server

Memory copy
Contexto switch
Syscall

Kernel

Figure 1. In user-space proxy architectures, traffic repeatedly transitions between kernel space and user space, increasing latency and CPU
consumption due to memory copies and context switches.

TCP and UDP Load Balancing from the Kernel



Each transition involves memory copies, context switches, and queue
waits — processes that increase latency and CPU consumption.

SKUDONET, on the other hand, delegates all of these operations to
the kernel, where netfilter applies its rules directly to packets.

Meanwhile, the orchestration logic — the part visible to the operator
— remains outside the data path, governing system behavior
through a readable, consistent, and predictable control plane.

The results are measurable:

o Latency remains stable even with hundreds of thousands of
active connections.

o CPU usage scales smoothly, with no abrupt spikes or IRQ
saturation.

» The TCP/IP stack remains intact, allowing inspection, tracing,
and security rules without performance loss.

2.4 UDP Load Balancing: Stateless Forwarding

Although the previous tests focus on TCP, the same SKUDONET
L4xXNAT engine extends to stateless UDP, where there is no session
or state to maintain.

Lightweight protocols such as Syslog or UDP metrics benefit from
direct kernel-level forwarding capable of handling millions of
datagrams per second per core, with only fractions of a millisecond
of additional latency.

Here, the limits are set by the PCle bus or the NIC itself — not by the
software.

To understand why these figures are possible, it is necessary to

compare the packet path in the kernel with that of a traditional
user-space load balancer.

TCP and UDP Load Balancing from the Kernel



3. TCP in the Kernel
vs. User Space

Kernel Space (SKUDONET L4xNAT)

In SKUDONET, forwarding decisions take place entirely within the
kernel's data plane. User space is only used for control and
configuration, not for packet handling.

Control Plane (User Space)

NIC NIC

Kernel

Client Line-date forwad'mg Backend
No memory copies Server

No content switches

Data Plane

Figure 2. SKUDONET executes all forwarding logic inside the kernel (netfilter + conntrack), eliminating kerneleuser-space transitions and
enabling low latency and efficient CPU utilization.

e The entire flow occurs in kernel mode.

e 0 buffer copies between kernel and user space.

e NAT, checksums, tracking, and forwarding all happen within the
same stack.

e Decisions made in microseconds; minimal latency (10-20 us).

¢ Memory per connection: ~3-5 KB.

e CPU remains available for the control path and auxiliary services.

In simple terms: the packet enters through the NIC, the kernel
makes the decision, and it exits through the other interface — never

leaving privileged space.

The control plane (the SKUDONET console) simply manages
netfilter rules — it never touches the traffic.

User Space

o 2 kernelouser transitions per packet (read/write).
e 2 memory copies (RX-»user, user->TX).

TCP and UDP Load Balancing from the Kernel



e Each connection requires 2 TCP sockets (client and backend).

e Duplicated buffers (kernel and process).

e Minimum latency: 100-300 us even when idle.

e Limited scalability: ~200-300k connections per core before
saturation.

Kernel
Parameter (SKUDONET User Space
L4xNAT)
Memory copies per packet 0 2
Context switches (syscalls) 0 2
TCP buffers per connection 1 2
Average memory per connection ~3-5 KB ~8-12 KB
Typical latency 10-20 us 100-300 ps
Concurrent connections per core >1M 200-300k
CPU per million connections ~25-35% ~70-90%

In summary, kernel space is an environment without intermediaries
— each packet moves at the speed of copper.

User space offers flexibility but pays the cost of each copy and each
syscall.

In SKUDONET, the L4XNAT core takes the shortest possible path
within the kernel: it doesn’t parse headers or protocols — it simply
decides and forwards.

That's the difference between a load balancer that processes traffic
and one that lets it flow.

TCP and UDP Load Balancing from the Kernel



4. Load Balancing Modes
in the Kernel

SNAT — Source Network Address Translation

Flow: Client » Load Balancer

The client sends packets to the VIP. SKUDONET intercepts them in
PREROUTING and creates an entry in conntrack.

Before forwarding, the kernel rewrites the source IP.

The backend responds to the balancer, which reverses the
translation.

Technical Impact:
e Fully bidirectional flow inside the kernel.
e CPU and memory: = 3-5 KB per connection.

o Full stability even in complex NAT environments.

Ideal for production environments requiring control, logging, and
security.

DNAT — Destination Network Address Translation

Flow: The balancer receives the packet addressed to the VIP.

It rewrites the destination IP to the real backend (POSTROUTING).
The backend sees the client’s real IP.

Technical Impact:

e Less header manipulation than SNAT.
e Preserves client IP (useful for ACLs and tracing).

TCP and UDP Load Balancing from the Kernel



e Requires controlled routing.
o Excellent balance between transparency and performance.

DSR — Direct Server Return

Flow: The balancer forwards the packet at Layer 2 (MAC rewrite or
IPIP/GRE encapsulation).

The backend has the VIP configured on its loopback interface
(arp_ignore=1, arp_announce=2).

It responds directly to the client, bypassing the balancer on the
return path.

Technical Impact:

Eliminates the return path through the balancer.
Minimal latency (<0.5 ms).

Massive CPU savings.

Ideal for read-heavy, UDP, or CDN traffic.

Client .
:P Typical
visible | Atency
NAT
Sourc Throu
SNAT P gh LB No -2 ms Low deploy
ments
) Th
Desti hrE; Internal
DNAT natio 9 . Yes 0.8-1.5 ms Medium routed
(optio
nIP farms
nal)
. R -
None Direct hgz\(jly/
DSR (L2) ?ient Yes <0.5ms High CDN/
UDP

TCP and UDP Load Balancing from the Kernel



5. The Control Plane: Where
the Kernel Becomes
Understandable

Working with the kernel is not simple. The netfilter APIs, hook
chains, and priority levels form a complex environment filled with
flags, tables, and structures.

SKUDONET simplifies this environment through its control path,
translating kernel configuration into a coherent, documented, and
secure syntax. What for a kernel engineer would be a collection of
nftables rules or a chain tree, becomes — for the operator — a set of
clear actions: create a service, add a backend, adjust weights, and let
the core kernel execute.

Every byte that ascends to user space consumes CPU cycles, and
every connection handled outside the kernel adds latency. That is
why SKUDONET chooses to work with the kernel, not against it.

The result is a load balancer capable of handling millions of TCP and
UDP connections per second, maintaining consistency,
performance, and operational transparency — all without auxiliary
processes, heavy libraries, or interpreter layers, relying solely on the
Linux kernel stack.

This integration between the control plane and the kernel defines

SKUDONET's architecture: it doesn’t hide complexity but transforms
it into a predictable, stable, and manageable tool.

TCP and UDP Load Balancing from the Kernel



Conclusion

SKUDONET does not seek to reinvent the kernel, but rather to
harness its potential and make it operationally accessible. Its
architecture allows traffic to be processed at line rate, provides
operators with clear visibility into the flow, and ensures stable,
predictable system behavior.

This philosophy defines its design: applying kernel engineering in a
practical, controlled manner — without adding unnecessary
complexity.

Kernel-level load balancing is not a theory or an experimental
demonstration; it is the foundation on which SKUDONET builds its
performance. By transforming the complexity of netfilter into an
efficient and predictable architecture, the system proves that
performance and control can coexist. The results speak for
themselves: measurable performance, full visibility, and a network
layer optimized to operate with precision and consistency.

TCP and UDP Load Balancing from the Kernel



< SKUDONET

-

.

Further Technical Resources

Documentation, configuration guides, and deployment examples are

available in our » Knowledge Base.

~

-

Technical Inquiry

If you would like to discuss specific performance requirements or
architectural considerations, our engineering team can provide
technical guidance » info@skudonet.com

| A

dddddqd

g dddd

gl d

dddadqd

|

e ddd44

i



https://www.skudonet.com/knowledge-base/
mailto:info@skudonet.com

